CD Spectra of 2,4-Dinitrophenyl Derivatives of α-Amino Acids Having Polynuclear Aromatic Group in the Side Chain. Absolute Configuration of 3-(9-Anthryl)alanine

NOTES

Masao Kawai,* Taketoshi Matsuura, Yasuo Butsugan, Syun Egusa,†
Masahiko Sisido,†† and Yukio Imanishi†

Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466

†Department of Polymer Chemistry, Kyoto University, Sakyo-ku, Kyoto 606

†Research Center for Medical Polymers and Biomaterials, Kyoto University, Sakyo-ku, Kyoto 606

(Received April 20, 1985)

Synopsis. CD spectra of 2,4-dinitrophenyl (Dnp) derivatives of α -amino acids having polynuclear aromatic group in the side chain with L- and D-configuration showed negative and positive Cotton effect, respectively, around 400 nm in consistent with previously proposed Dnp-aromatic rule. Application of the rule revealed D-configuration of levorotatory 3-(9-anthryl)alanine, which was further confirmed by chiroptical comparison of the 2,4-dinitrophenyl derivative and its p-methoxyanilide.

CD spectra of 2,4-dinitrophenyl (Dnp) derivatives of L- α -amino acids having aromatic side chain exhibit characteristic negative Cotton effect around 400 nm.^{1,2)} A general rule named Dnp-aromatic rule was proposed as described in Fig. 1: *i.e.*, Dnp derivatives of general formula 1 and 1', having stereochemistry corresponding to aromatic α -amino acids with L- and D-configuration, show negative and positive Cotton effect, respectively, at the longest wavelength band of DnpNH chromophore.²⁾

As examples of aromatic α-amino acids having polynuclear condensed aromatic group in the side chain, L-3-(1-naphthyl)alanine,³⁾ L-3-(2-naphthyl)alanine,³⁾ D-1-naphthylglycine,⁴⁾ D-2-naphthylglycine,⁴⁾ and D-3-(1-pyrenyl)alanine⁵⁾ were converted into the corresponding Dnp derivatives **2a—e**. As summarized in Table 1 all of these compounds exhibited intense Cotton effect around 400 nm, and in agreement with Dnp-aromatic rule the sign of the Cotton effect was negative and positive for the derivatives with L- and D-configuration, respectively. Thus Dnp-aromatic rule

Arom R
Dnp NH
$$\dot{C}$$
 $-$ R
Dnp NH \dot{C} $-$ Arom
H
 1
 θ
 θ
 θ
 θ
 θ
 θ
 θ
 θ
 θ

Fig. 1. Dnp-aromatic rule.

Arom implies an achiral group which contains an

aromatic chromophore. R implies a nonaromatic group.

ıp.

was shown to be valid for these polynuclear aromatic α -amino acid derivatives.

Optically active 3-(9-anthryl)alanine hydrochloride ($[\alpha]_D^{21}$ -43°, c 0.058, ethanol) was synthesized,⁶⁾ but its absolute configuration was not known yet. CD spectrum of Dnp derivative **3a** of the anthrylalanine exhibited an outstanding positive Cotton effect ($[\theta]$ +50800) at 414 nm, which indicated p-configuration of the amino acid.

p-Methoxyanilides, such as 4b, of Dnp-L- α -amino acids with nonaromatic side chain, which correspond to general formula 1', exhibit prominent Cotton effect around 400 nm.^{2,7)} Positive contribution of the anilide chromophore to $[\theta]_{\approx 400}^{\text{max}}$ value of Dnp-L- α -amino acids was also observed for the p-methoxyanilides, 4c and 4d, of Dnp-L-phenylalanine $3c^{1,2}$ and N-Dnp-O-benzoyl-Lthreonine 3d,8) respectively (Table 2). The threonine derivative 3d was known to exhibit positive Cotton effect at 403 nm,9) in spite of L-configuration of the α carbon, which is due to the presence of additional chiral center in the chromophore-bearing side chain.8) Thus introduction of p-methoxyanilide group to Dnp-αamino acids with L- and p-configuration was assumed to give positive and negative contribution, respectively, to the Cotton effect.

Magnitude of the positive Cotton effect of Dnp-(9-anthryl)alanine p-methoxyanilide 4a is smaller than that of 3a as shown in Table 2 indicating negative contribution of the anilide chromophore, which is consistent with above-assigned p-configuration of this amino acid residue.

Table 1. Cotton effect around 400 nm of Dnp derivatives of α -amino acids having polynuclear aromatic group in the side chain

	Formula	Configuration of α-carbon	Arom	R	$[\theta]^{\max}(\lambda/nm)$
2a	1	L	(1-Naphthyl)methyl	CO ₂ H	-19300 (403)
2b	1	L	(2-Naphthyl)methyl	CO_2H	-17500(403)
2 c	1′	D	l-Naphthyl	CO_2H	+17100 (400)
2d	1′	D	2-Naphthyl	CO_2H	+25600 (396
2 e	1′	D	(1-Pyrenyl)methyl	CO_2H	+30800 (410)

TABLE 4. CD SPECTRAL DATA OF Dnp-amino acids and p-methoxyanilides recorded in methanol

Compd	Molecular ellipticity ($[\theta] \times 10^{-3}$) and wavelength (λ /nm) in parentheses. ^{a)}
2a	-19.3(403), $0(336)$, $+5.4(316 sh)$, $+9.5(297)$, $+8.5(292)$, $+9.3(285)$, $0(272)$, $-12(250 sh)$, $-116(223)$, $-32(215)$
2b	-17.5(403), $0(343)$, $+6.3(318)$, $0(288)$, $-6.9(263)$, $0(248)$, $+69(229)$, $0(225)$, $-160(220 sh)$
2 c	+17.1(400), 0(342), -6.0(310), -3.2(293), -5.8(260), 0(249), +13(235), 0(232), -232(220 sh)
2d	+25.6(396), 0(355), -18.4(330), -5.0(290), -286(230), 0(218), +32(215), 0(212)
2 e	+30.8(410), 0(368), $-68.8(341)$, $-10.9(331)$, $-13.5(328)$, 0(322), $+8.8(319)$, $+4.5(310 sh)$, 0(302), $+5.4(288 sh)$, $-33.9(276)$, $-11.6(268)$, $-13.0(265)$, $-5(254 sh)$, $-2(249)$, $-214(240)$, $-100(234 sh)$, $-29(220)$
3a	+50.8(414), 0(389), -13.7(382), -12.7(378), -22.8(368), 0(349), +17.3(329), 0(295), -2.4(289), 0(284), +141(260), 0(253), -97(228), 0(215)
4a	+34.3(418), $0(392)$, $-22.3(381 sh)$, $-27.5(368)$, $0(349)$, $+24.2(327)$, $+3.4(288)$, $+65.8(265)$, $0(255)$, $-77(242 sh)$, $-95(226)$
4 c	+4.4(395), 0(371), -18.6(335), -4.6(290), -62(252), -26(223)
4 d	+14.2(390), 0(354), -13.4(320), -5.4(290), -41(250 sh), -50(240), -16(224)

a) sh: Shoulder.

Table 2. Comparison of $[\theta]^{max}$ values around 400 nm of $Dnp-\alpha$ -amino acids $(\mathbf{3a-d})$ and their p-methoxyanilides $(\mathbf{4a-d})$

$[\theta]$	max ≈400 of 3	$[\theta]_{\approx 400}^{\text{max}} \text{ of } 4$	Contribution of the anilide	Configuration of α-carbon
a	+50800	+34300	_	D
b	+1600	+12900	+	L
c	-9100	+4400	+	L
d	+5000	+14200	+	L

Table 3. Melting points, solvent of crystallization, and molecular formula of \mathbf{Dnp} -amino acids and p-methoxyanilides

Comp	d $_{m{ heta_m}}$ /°C Solvent of $_{m{ heta_m}}$ /°C Crystallization	Formula ^{a)}
2a	90—93 H ₂ O ^{b)}	$C_{19}H_{15}N_3O_6 \cdot 1/4H_2O$
2b	196—198CHCl ₃	$C_{19}H_{15}N_3O_6 \cdot 3/4H_2O$
2 c	133—138Methanol−H ₂ O	$C_{18}H_{13}N_3O_6 \cdot 1/2H_2O$
2d	105—110Methanol-H₂O	$C_{18}H_{13}N_3O_6 \cdot 1/2H_2O$
2e	211—215Ethyl acetate	$C_{25}H_{17}N_3O_6 \cdot CH_3CO_2$
		C_2H_5
3a	206—210Ethyl	$C_{23}H_{17}N_3O_6$
	acetate-Hexane	
4 a	265—268Acetone-Methanol	$C_{30}H_{24}N_4O_6$
4 c	203—204Benzene	$C_{22}H_{20}N_4O_6$
4 d	139—141 Benzene	$C_{24}H_{22}N_4O_8$

a) Satisfactory analytical data (C, H, N $\pm 0.35\%$) were obtained for the given formula. b) Precipitate from aquaous acidic solution.

Experimental

Dnp-amino acids were prepared from parent amino acids using 1-fluoro-2,4-dinitrobenzene and NaHCO₃ in

ethanol- H_2O (2:1). p-Methoxyanilides, **4a** and **4c**, were synthesized from Dnp-amino acids, **3a** and **3c**, respectively, and p-anisidine using dicyclohexylcarbodiimide. N-Dnp-O-benzoyl- ι -threonine p-methoxyanilide **4d** was prepared by benzoylation of Dnp- ι -threonine p-methoxyanilide²⁾ with benzoyl chloride-pyridine.

Melting points were uncorrected and were listed in Table 3 along with solvents of recrystallization. CD spectra were recorded in methanol solutions at room temperature on a JASCO J-40C spectropolarimeter and were summarized in Table 4.

The authors are grateful to Kanegafuchi Chemical Industry Co. Ltd. for kind gift of naphthylglycines and to Dr. Ukon Nagai of Mitsubishi-Kasei Institute of Life Sciences for helpful discussions.

References

- 1) M. Kawai, U. Nagai, and M. Katsumi, Tetrahedron Lett., 1975, 2845.
- 2) M. Kawai, U. Nagai, M. Katsumi, and A. Tanaka, Tetrahedron, 34, 3435 (1978).
- 3) M. Sisido, S. Egusa, and Y. Imanishi, J. Am. Chem. Soc., 105, 1041, 4077 (1983).
- 4) p-1- and p-2-Naphthylglycines were supplied by Kanegafuchi Chemical Industry Co. Ltd.
- 5) S. Egusa, M. Sisido, and Y. Imanishi, *Chem. Lett.*, **1983**, 1307; S. Egusa, M. Sisido, and Y. Imanishi, *Macromolecules*, **18**, 882 (1985).
 - 6) S. Egusa, M. Sisido, and Y. Imanishi, to be published.
 - 7) M. Kawai and U. Nagai, Tetrahedron Lett., 1977, 3889.
- 8) M. Kawai, U. Nagai, and A. Tanaka, Bull. Chem. Soc. Jpn., 55, 1213 (1982).
- 9) The $[\theta]$ values of **3d** were erroneously given in Table 1 of Ref. 8, which must be corrected as follows: $[\theta]_{403} + 5000$, $[\theta]_{350}$ 0, $[\theta]_{318} 1500$, $[\theta]_{298}$ 0, $[\theta]_{266} + 4600$, $[\theta]_{244}$ 0, and $[\theta]_{222} 14800$.